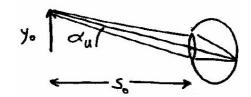
Magnifying Glass (simple magnifier) unaided eye: image formed on retina.



• get clear

Image only

for

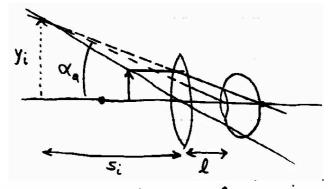
So > do

I.e. object at

near point

(do ≈ 25 cm)

positive lens: form virtual, erect image (so < f), with 15:1> do:



· rays oppear to come from virtual image, and are focussed by eye.

· compare angles subtended by "unaided" image, olu, with that of "oided" image, ola;

(paraxial) $\alpha_u \approx \frac{y_0}{d_0}$, $\alpha_a \approx \frac{y_i}{|s_i|+l}$ (max value, $s_0=d_0$)

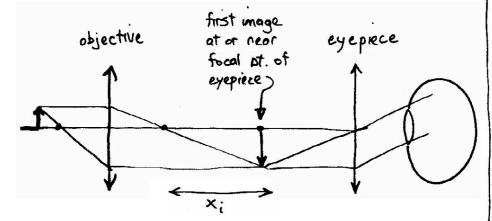
magnifying power $MP = \frac{\alpha_0}{\alpha_u} = \frac{y_i}{y_0} \frac{d_0}{|s_i| + \ell}$

but $\frac{y_i}{y_0} = -\frac{s_i}{s_0} \Rightarrow MP = -\frac{s_i}{s_0} \frac{do}{\ell - s_i}$

get various MP depending on s_i and l; max MP for l = 0, and take $|s_i| \to \infty$ (for relaxed eye) yielding $s_o = f$ $l \to \infty$

eg. f=10 cm, $MP = \frac{25 \text{ cm}}{10 \text{ cm}} = 2.5 \times \text{larger MP limited by observations}$.

Microscope - 2 lenses foccfe



$$M_{To} = -\frac{x_i}{f_o}$$
 $X_i = tube length, usually standard value of 16 cm$

$$\Rightarrow$$
 total $M_T = M_{To} \cdot MP_e = -\frac{16}{f_o} \cdot \frac{25}{f_e}$

eyeprece: compound lens - designed for comfortable eye location. MP=10 typical

objective: eg. $f_0 = 3.2 \Rightarrow 5 \times \text{mag}$.

fixed
$$x_i : \leq_o = \frac{f_0 s_i}{s_i - f_0} = \frac{f_0 (x_i + f_0)}{x_i} = \frac{f_0 + f_0}{x_i}$$

> so ≈ fo ; higher mag > smaller fo and so

Telescopes - A) Astronomical

-focusses rays from object 5, >00

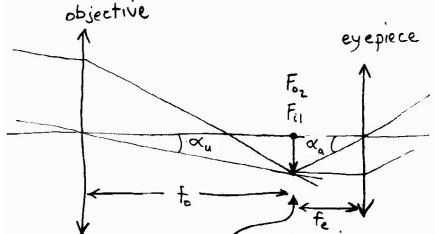


image from objective at Fi,; coincides nearly with Fo,

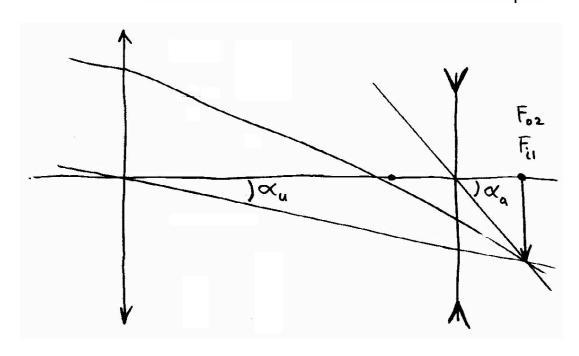
inverted image

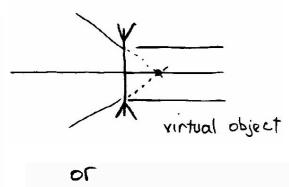
$$M = \frac{\alpha_n}{\alpha_u} = -\frac{f_o}{f_e}$$

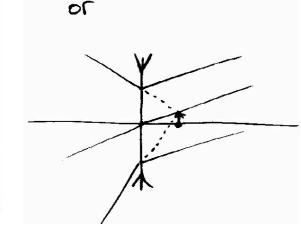
$$f_o \gg f_e$$

B) Galilean Telescope

fe<0 ⇒ erect image length = fo+fe, shorter than for astronomical telescope







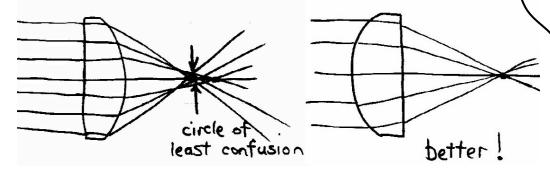
again,
$$M = \frac{\alpha_a}{\alpha_u} = -\frac{f_o}{f_e}$$

Aberrations: arise from -

- (a) paraxial approx 2 | spherical aber. coma | astigmatism | curvature of field

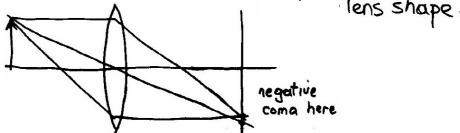
examples:

· spherical abernation: nonparaxial rays are too strongly bent

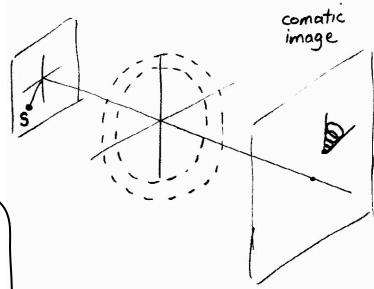


· coma: arises when yo = 0

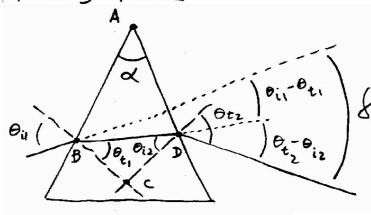
also depends on lens shape.



consider focussing of off-axis point:



Prisms - variety of types dispersing prism:



given & , n , Oil determine Otz:

look at total deviation 5:

- polygon ABCD has 2 right angles

and LBCD = TT- (Oti+0iz)

thus $J = \theta_{i1} + \theta_{t2} - \propto (*)$ get θ_{t2} from Snell's law:

$$\theta_{t2} = \sin^{-1}(n\sin\theta_{i2}) = \sin^{-1}(n\sin(\alpha-\theta_{t1}))$$

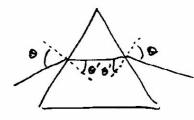
$$\sin\alpha\cos\theta_{t1} - \cos\alpha\sin\theta_{t1}$$

$$(1-\sin^{2}\theta_{t1})^{r_{2}}$$

and nsinot, = sinoi

$$\Rightarrow \theta_{tz} = \sin^{-1} \left[\sin \alpha \left(n^2 - \sin^2 \theta_{i1} \right)^2 - \cos \alpha \sin \theta_{i1} \right]$$
and get of from (*).

angle of minimum deviation:



$$\theta_{e_2} = \theta_{i_1} = \theta$$

then $\theta = 2\theta - 2\theta'$
 $\sin \theta = n \sin \theta'$
 $x = 2\theta' \Rightarrow \theta' = \frac{\alpha}{2}$
 $\theta = \frac{\theta + 2\theta'}{2} = \frac{\theta + \alpha}{2}$

0, = 0; = 0'

$$\Rightarrow$$
 $\sin\left(\frac{d+x}{2}\right) = n \sin\left(\frac{x}{2}\right)$

$$\Theta = \frac{d+20!}{2} = \frac{d+\alpha}{2}$$
can solve for d (given n)
or n (given d).